PREP Information Needs, Prioritization & Connection to Priority Setting & Decision-Making

Info Needed	Short Description	Within an	Help with Priority Setting or Decision Making?	Priority
for CCMP Goal		Indicator?		(med, high)
Sediment	Organic chemistry, grain size,	No.	Critical for management of both nutrient & toxic	High, esp.
Quality	benthic community & toxicity		pollution, not covered by water concentration	chemistry
Sodimont	Assessments Rottor understand current	No	dala Suspended sediments are important	Component
Transport	sources & movements of	NO.	Linderstanding sources helps to inform	підії
Transport	sediments for estuaries		management decisions.	
Bio-Optical	Highly resolved (time, space)	No.	Light a suspected issue. Work would guide	Med
Modeling	measurements of TSS, CDOM,	_	whether interventions were achieving light goals.	
-	chl-a to understand light limits			
Nitrogen	Clearly bound the system in	Part of "N	Builds a foundation for further understanding	High
Budget, Part 1	terms of what goes in and what	Loading"	cycling of N within the estuary, critical for	
	goes out		managing N	
Nitrogen	Clarify how N cycles through	Part of "N	Critical for N management; currently we only	High
Budget, Part 2	system: nitrify/denitrify; export	Loading"	know what is "loaded" into the estuary	
	to ocean; sediment			
Emerging	Better understand quantity of	No	Critical for interventions such as: source control or	Med
Contaminants	emerging contaminants in our	NO.	wastewater treatment.	ivicu
(Amount)	systems			
Emerging	Better understand impacts of	No.	Critical for motivating interventions such as:	Med
Contaminants	emerging contaminants on		source control or wastewater treatment.	
(Impacts)	ecosystem & human health			
Clams Ecology	Better understand reasons for	Part of	Better understand intervention options for	Med
Research	changes in clam health: disease,	"Clams"	improving clam abundance	
	predators, water quality, etc.	indicator		
Lobster	Assess changes in number &	NO.	Lobster info may add insight into ecosystem	Med
Health	nearth parameters of lobsters		interventions	
Green Crab	Understand changing numbers of	Yes, Part of	Help understand changes in other habitats: help	Med
Abundance	green crabs, which have big	"Clams"	understand if current interventions are working	
	impacts on ecosystems	indicator		
Oyster Reef	Assess where and how big oyster	Yes. Part of	Currently track densities at 6 reefs; but also	High
Mapping	reefs are in our estuaries.	"Oyster"	important to know other places oysters are.	
		indicator		
Seaweed Tissue	Use seaweed tissue analysis an	No.	Studies show that seaweed analysis can add	Med
Analysis, P. 1	concentration over time		abundance	
Seaweed Tissue	Associated with above use	No	Helps to target interventions based on source of	Med
Analysis, P. 2	isotope analysis to determine	110.	N: freshwater. WWTP. etc.	ivica
	where N is coming from			
SeagrassNet	Use SeagrassNet Health Protocol	No.	Current presence/absence assessment of seagrass	High
(Seagrass	to understand changes in specific		not enough to guide management decisions	
Health)	seagrass parameters			
Seagrass Deep	Clarify changes in where the	No.	Noting changes in deep edge location helps track	Med
Edge	deepest eelgrass is.		changes in water clarity	
Assessment	Moasuro changos in pH & pCO, in	No	Acidification impacts productivity &	Mod
Acidification	coastal & estuarine waters	110.	eutrophication & could impact water quality	ivieu
			results/management	
Improve past	Analyze last 10-15 years of data	No.	Adds insight to water quality issues & helps	Med
WQ trend	re: NPS N, light attenuation, chl-a		forecast future challenges.	
analysis	& TSS, relationship to weather			
High-Res	Study nutrient loading dynamics	No.	Can help guide stormwater management practices	Med
loading around	as they relate to storms, using		& understand changes in system health	
storms	high-resolution sampling			